Section 15.8: Triple Integrals In Spherical Coordinates

# What We'll Learn In Section 15.8

- 1. What are spherical coordinates?
- 2. Triple integrals in spherical coordinates

The spherical coordinates of a point



 $ho \geqslant 0 \qquad 0 \leqslant \phi \leqslant \pi$ 





 $\theta = c$ , a half-plane



#### $\phi = c$ , a half-cone





<u>Ex 1</u>: The point  $(2, \frac{\pi}{4}, \frac{\pi}{3})$  is given in spherical coordinates. Plot the point and find its rectangular coordinates.

**Warning** There is not universal agreement on the notation for spherical coordinates. Most books on physics reverse the meanings of  $\theta$  and  $\phi$  and use r in place of  $\rho$ .

<u>Ex 2</u>: The point  $(0,2\sqrt{3},-2)$  is given in rectangular coordinates. Find spherical coordinates for this point. 2. Triple integrals in spherical coordinates <u>To integrate in spherical coordinates...</u>

 $x = 
ho \sin \phi \cos heta \qquad y = 
ho \sin \phi \sin heta \qquad z = 
ho \cos \phi$ 

Volume element in spherical coordinates:

 $dV = 
ho^2 \, \sin \phi \, d
ho \, d heta \, d\phi$ 



2. Triple integrals in spherical coordinates <u>To integrate in spherical coordinates...</u>

 $\iiint_E f(x,y,z) \ dV$ 

 $=\int_{c}^{d}\int_{\alpha}^{\beta}\int_{a}^{b}f(\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,\rho\cos\phi)\ \rho^{2}\sin\phi\ d\rho\ d\theta\ d\phi$ 

where E is a spherical wedge given by

 $E = \{(
ho, heta, \phi) \mid \ a \leqslant 
ho \leqslant b, lpha \leqslant heta \leqslant eta, c \leqslant \phi \leqslant d\}$ 

2. Triple integrals in spherical coordinates <u>To integrate in spherical coordinates...</u>

 $E = \{(
ho, heta,\phi) \mid a \leqslant heta \leqslant eta, c \leqslant \phi \leqslant d, g_1 \left( heta,\phi
ight) \leqslant 
ho \leqslant g_2 \left( heta,\phi
ight)\}$ 

2. Triple integrals in spherical coordinates

<u>Ex 3</u>: Evaluate  $\iint_{B} e^{(x^{2}+y^{2}+z^{2})^{3/2}} dV$ , where *B* is the unit ball  $B = \{ (x, y, z) \mid x^{2} + y^{2} + z^{2} \le 1 \}.$ 

In rectangular coordinates, this integral becomes...

$$\int_{-1}^{1}\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}}e^{\left(x^2+y^2+z^2
ight)^{3/2}}\,dz\,dy\,dx$$

#### 2. Triple integrals in spherical coordinates

<u>Ex 4</u>: Use spherical coordinates to find the volume of the solid that lies above the cone  $z = \sqrt{x^2 + y^2}$  and below the sphere  $x^2 + y^2 + z^2 = 1$ .